
Slicing Aspect-oriented program Hierarchically
S. R. Mohanty

Dept. of CS
RIMS, Rourkela

Odisha, India Pin 769012

P. K. Behera
Dept. of CSA

Utkal University, Vani Vihar
Odisha, India

D. P. Mohapatra
Dept. of CSE NIT,

Rourkela Odisha, India

Abstract—While developing a software system, the complexity
in describing a problem should be reduced. This can be done
by separating the concern in a clean and explicit way. Each of
the concern can be addressed by partitioning a software system
into modules. Concerns are clearly identifiable with a special
linguistic construct called Aspects, which has been introduced
by a new programming paradigm known as aspect-oriented
programming. No doubt aspect-oriented programming brings lots
of opportunities for the software developer. On the other hand,
it is very difficult for analysing those programs for different
software engineering activities. In such scenario, slicing plays
a vital role. This paper proposes an approach to compute the
dynamic slices of aspect-oriented programs. In our approach, we
have introduced different level dependence graphs, such as aspect-
oriented statement level dependence graph, aspect-oriented method
level dependence graph, aspect-oriented AC weaving level depen-
dence graph, aspect-oriented package level dependence graph to
represent an aspect-oriented program under consideration. Then,
we apply aspect-oriented reverse hierarchical dynamic slicing
algorithm on the intermediate program representation to compute
the dynamic slices. Our algorithm traverses the dependence edges
starting from the slicing node in a reverse hierarchical manner
to list the reached node, which constitute the dynamic slice of
the aspect-oriented program under consideration. This approach
is advantageous as it constructs the graph and computes the
dynamic slices level wise. At a particular instance the level
dependence graph is quite manageable and quickly traversed. It
can also generate intermediate slices moving from the statement
level to package level. The space complexity of our algorithm
is O(n2), where n is the total number of nodes in the graph
and time complexity is O(n2), Where n is the total number of
executed statements in the execution trace of the program.

I. INTRODUCTION

While developing a software system, the complexity in
describing a problem required to be reduced. This can be
done by separating concern in a clean and explicit way. Each
of the concern can be addressed by partitioning a software
system into modules. Modularization, on the other hand,
increases the comprehensibility of the software system.

Concerns are clearly identifiable with a special linguistic
construct called aspect. These aspects, are the new features
introduced by a new programming paradigm known as
aspect-oriented programming. Object-oriented programming
has increased its popularity among the software developers.
The aspect-oriented programming is not a replacement
of it. In object-oriented programming languages, the
concerns are distributed among the objects. Whereas aspect-

oriented programming paradigm introduces a new module,
encapsulating the concern named as aspect.

Such parts are developed with isolation and then they
assembled together to produce the whole system. Aspect-
oriented programming brings lots of opportunities for the
software developer. On the other hand, it is very difficult
for analyzing those programs through a technique like
program slicing. Because aspect-oriented programming
introduces some new features like join point, pointcut,
advices, introduction and aspect. Which needs to be handled
properly while slicing those programs. This paper focuses on
dynamic slicing of aspect-oriented programs.

A. Motivation

Aspect-oriented programming paradigm is introduced
with a new feature called aspect. Aspect helps to reduce
the complexity while developing a software. Aspect can be
developed with isolation. AOP brings lots of opportunities for
the software developer with its new features like join point,
pointcut, advices, introduction, and aspect. But on the other
hand, it is difficult to analyze the technique called program
slicing. In this paper, we tried to handle all these features of
AOP through suitable intermediate program representation.
And to develop a technique to get dynamic slice using it.

B. Objectives

This paper introduced with the objectives of developing
a suitable intermediate representation for an aspect-oriented
program. We also focused on developing an algorithm to
compute the dynamic slices of AOP.
The rest of the paper is organized as follows: Some basic
concepts and definitions are discussed in section II. Section
III presents the proposed algorithm to compute the dynamic
slices of an aspect-oriented program and discusses the working
of the algorithm along with the correctness and complexity
analysis. Section IV presents the proposed tool architecture.
Section V contains a comparative study of the proposed work
with some of the existing ideas related to our work. Section
VI concludes the paper and presents the future work.

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5004

Fig. 1. An aspect-oriented program example-1

II. BACKGROUND

This section explains the proposed intermediate representa-
tion of the aspect-oriented program as well as various terms
used in the proposed algorithm. But before that this paper
presents an overview of the aspect-oriented program.

A. Overview of aspect-oriented programs

An aspect-oriented programming paradigm is a bit dif-
ferent concept than that of the object-oriented programming
paradigm, we have taken an aspect-oriented program and
explained it features like join point, pointcut, advice and
aspect. Let us consider an aspect-oriented example program
in Fig.1.

In the example program in Fig.1, a class with name
HelloWorld is defined with two different member functions
Say() and SayToPerson(). Say() method takes one argument
message of string type and displays it. SayToPerson() method
accept two arguments name and message. Both are of string
type and display them on the screen.

Then, the example program declares an aspect, whose

declaration is same as a class declaration. But it contains a
pointcut named as CallSayMessage(), which declare a join
point. Join point tells that when a method of class HelloWorld
started with a string ”Say” is called with any number of
parameters, two pieces of advice will be executed. The aspect
define two pieces of advice one is before(), another one
is after(). Before() advice will print ”Good day” and after

advice will print ”Thankyou”. Before() advice will run and
produce the output before the specified method call in the
join point. And after() advice will run and produce its output
after the specified method call in the join point.

The example program declares the main class named as
ExampleAspect. We called it main class because it contain
the main() method. In the main() method object ”hw” of
the class HelloWorld is declared. With the object ”hw” two
distinct methods Say() and SayToPerson() is being called.
The methods called in main() satisfied the criteria specified
in the join point declared in the aspect MannerAspect.

The two classes HelloWorld, ExampleAspect along with
the aspect MannerAspect are grouped into package ”P”. When
this example program will be compiled by AspectJ compiler
the advice i. e. before() and after() are weaved with the join
point i. e. Call(public static void HelloWorld.Say*(..)). So
When the program starts its execution, the object ”hw” is
created. At first before() advice is executed then the Say()
method is executed. After the execution of Say() method
after() advice is executed. Same thing happens when the
method SayToPerson() called with the object ”hw”.

The example program in Fig 1 explains the features of an
aspect-oriented program. In the example program, we can see
how the concerns are separated from the core module and
introduced in a new unit called MannerAspect. Although those
concerns are kept isolated they assemble with the main module
during the compilation and produce the desired output when
the program is executed.

B. Basic concepts and definitions

This section presents some basic concepts and definitions
used in the proposed algorithms.

1) AOSL Dslice: This is the aspect-oriented statement level
dynamic slice. Our approach computes dynamic slice of an
aspect-oriented program level wise. We broadly defined four
levels, they are statement level, method level, class level and
package level.
AOSL Dslice is the slice computed in the statement level. It
contains all the statements that affect the slicing node.

2) AOML Dslice: This is the slice computed at the method
level. We called it as the aspect-oriented method level dynamic
slice. It contains all the method entry nodes that affect the
slicing node.

3) AOCL Dslice: This is the dynamic slice of an
aspect-oriented program in the class level. It contains
the classes and aspects that may affect the slicing node. It
contains all the classes and aspects that affect the slicing node.

4) AOPL Dslice: This is the dynamic slice of an aspect-
oriented program at the package level. It contains all the
packages that affect the slicing node.

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5005

5) Slicing node: Before the dynamic slices of the
different level are computed, our approach first constructs the
different level graphs of an aspect-oriented program under
consideration. This graph contains nodes and edges. Nodes
represent the statements, methods, class or packages. And
the edges represent the dependency among the nodes. Here
slicing node represents a node in the graph on which the
dynamic slice has to be computed.

6) AO Dslice: All the different level slices are integrated

to form the AO Dslice. This is the aspect-oriented dynamic
slice of an aspect-oriented program under consideration. While
eliminating the concepts of different levels, it contains all
the statements of the aspect-oriented program that affect the
slicing node

C. Intermediate Program Representation

A systematic approach of computing dynamic slice of an
aspect-oriented program followed two distinct steps:

• Construction of a suitable intermediate program represen-
tation

• Applying the dynamic slicing algorithm on the interme-
diate program representation.

Our approach is based on constructing the intermediate
program representation based on the execution trace. We first
run the program with the required input values to get the
execution trace. Then, we construct the intermediate program
representation.

In this section, we present an intermediate program

representation for an aspect-oriented program. We have
proposed to construct the intermediate program representation
of an aspect-oriented program in different levels. We
introduced four different level graphs. They are aspect-
oriented statement level dependence graph, aspect-oriented
method level dependence graph, aspect-oriented AC weaving
level dependence graph and aspect-oriented package level
dependence graph.

We have introduced these level graphs for computing

the dynamic slices of aspect-oriented programs. But we
introduced an extra node to represent the weaving of an
advice with a join point.

Let us consider an example program given in Fig. 2.

We are quoting this example program from the research
work done by Zhao [6]. In this section, we construct and
explain the graphs for different level i.e. aspect-oriented
statement level, aspect-oriented method level, aspect-oriented
AC weaving level and aspect-oriented package level of the
example program .

The example program contains two classes named as Point

and Shadow. It contain one aspect named as PointShadowPro-
tocol. All these are grouped into an package called P. Class
Point have two data members x and y, both are of integer

Fig. 2. An aspect-oriented program example-2

types.The Point class contains one constructor and six meth-
ods. Class Shadow contains a static final data member offset
initialized with 10, two integer x and y, one constructor and
one method. Aspect PointShadowProtocol contains a private
data member shadowCount, which is an integer initialized
with 0, a data member Point.shadow. Three Pointcuts settings,
settingX, settingY. And three after advices. These three after
advices are weaved after the calling of constructor Point(),
method setX(), method setY() respectively.
Now, we will explain our proposed level dependence graphs
for aspect-oriented program with respect to the example pro-
gram given in Fig.2.

1) Aspect-oriented statement level dependence graph:
Aspect-oriented statement level graph is an arc classified graph
and can be defined as follows:
GhAOSL ={N 1d , E1d }
Where N 1d is the set of nodes in the aspect-oriented statement
level graph and E1d is the set of edges depicting various types

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5006

Fig. 3. Aspect-oriented statement level dependence graph of example program
given in Fig. 2

of dependencies between the nodes. The above two sets can
be defined as follows:
N 1d = {n | n is the statement of the program Pro }.
E1d = {e | e represents the dependency between n1 and n2 ,
such that n1 , n2 ∈ N 1d }.

Aspect-oriented statement level graph contains all the exe-
cuted statements, method entry nodes. It also contains edges
to represents the data dependencies, control dependencies, call
dependencies, weaving dependencies etc. AOSLDG of the
example program in Fig.2 is given in Fig.3.

2) Aspect-oriented method level dependence graph:
Aspect-oriented method level graph is an arc classified graph
and can be defined as follows:
GhAOM L ={N 2d , E2d }
Where N 2d is the set of nodes in the aspect-oriented method
level graph and E2d is the set of edges depicting various types
of dependencies between the nodes. The above two sets can
be defined as follows:
N 2d = {n | n is the statement of the program Pro }.
E2d = {e | e represents the dependency between n1 and n2 ,
such that n1 , n2 ∈ N 2d }.

Fig. 4. Aspect-oriented method level dependence graph of example program
given in Fig. 2

Aspect-oriented method level dependence graph contains
method entry nodes, class entry nodes, and aspect-entry nodes.
Besides these three nodes, it also represents the method to a
class, method to aspect and method to method interdependen-
cies.

3) Aspect Entry Node: Entry to an aspect is represented
by Aspect entry node. We have proposed double square to
distinguish the aspect entry node and class entry node. Class
entry node is represented by a square.

4) Weaving edge: In our proposed graph, we have in-
troduced a new edge called weaving edge to represent the
weaving of an advice with the join point. We represent the
weaving edge with a waved line.

AOMLDG of the example program in Fig.2 is given in
Fig.4.

5) Aspect-oriented AC(Aspect-Class) weaving level depen-
dence graph: Aspect-oriented AC weaving level dependence
graph is an arc classified graph and can be defined as follows:

GhAOAC W L ={N 3d , E3d }
Where N 3d is the set of nodes in the aspect-oriented method
level graph and E3d is the set of edges depicting various types

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5007

Fig. 5. Aspect-oriented AC weaving level dependence graph of example
program given in Fig. 2

of dependencies between the nodes. The above two sets can
be defined as follows:
N 3d = {n | n is the statement of the program Pro }.
E3d = {e | e represents the dependency between n1 and
n2 , such that n1 , n2 ∈ N 3d }. AOACWLDG contains the
class entry nodes, aspect entry nodes, nodes representing
the data members, nodes representing the member functions.
It also reflects the class to class and aspect to class inter-
dependencies.

AOACWLDG of the example program in Fig.2 is given in
Fig.5.

6) Aspect-oriented package level dependence graph:
Aspect-oriented package level dependence graph is an arc
classified graph and can be defined as follows:
GhAOP L ={N 4d , E4d }
Where N 4d is the set of nodes in the aspect-oriented package
level graph and E4d is the set of edges depicting various types
of dependencies between the nodes. The above two sets can
be defined as follows:
N 4d = {n | n is the statement of the program Pro }.
E4d = {e | e represents the dependency between n1 and n2 ,
such that n1 , n2 ∈ N 4d }.

AOPLDG contains aspect entry nodes, class entry nodes,
package entry nodes and their interdependencies.

AOPLDG of the example program in Fig.2 is given in Fig.5.

Fig. 6. Aspect-oriented package level dependence graph of example program
given in Fig. 2

III. PROPOSED ALGORITHMS

This section presents our proposed algorithms. We
have divided this section into two subsections. The first
subsection presents the proposed algorithm to construct the
different aspect-oriented level dependence graphs. The second
subsection presents the algorithm, which will be applied on
the constructed graphs constructed to compute the dynamic
slice of an aspect-oriented program. We named our algorithm
aspect-oriented reverse hierarchical slicing algorithm.

After presenting the algorithms, we have given the overview
of the aspect-oriented reverse hierarchical slicing algorithm.
Then, we explain the working of our algorithm followed by
the correctness and complexity analysis.

A. Algorithm for constructing different aspect-oriented level
graphs

Before computing the dynamic slice of an aspect-oriented
program, we represent it using different level graphs. We
have identified four different levels of constructing the graphs
and here we present the algorithms of constructing the
aspect-oriented level graphs.

Let us consider that there are n number of statements, l
number of methods, q number of classes/aspects. Among
these, there are q1 number of classes and q2 number of
aspects present. Such that q1+q2=q. And r numbers of

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5008

packages are there.

1) Algorithm for constructing aspect-oriented statement
level dependence graph: Considering AOSG is a two-
dimensional array storing the information of the aspect-
oriented statement level dependence graph.

1) Begin
2) For each statement draw a circle
3) For each method entry draw double circle
4) For i = 1 to n

For j = 1 to l

a) if AOSG [i] control dependent on AOSG [j]
Add control dependent edge from AOSG [i] to
AOSG [j]

b) if AOSG [i] calls AOSG [j]
Add call edge from AOSG [i] to AOSG [j]

5) For i = 1 to n
For j = 1 to n

a) if AOSG [i] data dependent on AOSG [j]
Add data dependent edge from AOSG [i] to
AOSG [j]

6) For i = 1 to l
For j = 1 to l

a) if AOSG [i] control dependent on AOSG [j]
Add control dependent edge from AOSG [i] to
AOSG [j]

7) End

2) Algorithm for constructing aspect-oriented method level
dependence graph: Considering AOMG is a two-dimensional
array storing the information of the aspect-oriented method
level dependence graph.

1) Begin
2) For each class draw a square
3) For each aspect draw double square
4) For each method entry draw double circle
5) For i = 1 to l

For j = 1 to q1

a) if AOMG [i] is member function of AOMG [j]
Add include edge from AOMG [i] to AOMG [j]

6) For i = 1 to l
For j = 1 to q2

a) if AOMG [i] is a member function or advice of
AOMG [j]
Add include edge edge from AOMG [i] to

3) Algorithm for constructing aspect-oriented AC weaving
level dependence graph: Considering AOACG is a two-
dimensional array storing the information of the aspect-
oriented AC weaving level dependence graph.

1) Begin
2) For each class draw a square
3) For each aspect draw double square
4) For each method entry draw double circle
5) For each statement draw a circle
6) For i = 1 to n

For j = 1 to q1
a) if AOACG [i] is a data member of AOACG [j]

Add include edge from AOMG [i] to AOMG [j]
7) For i = 1 to l

For j = 1 to q1
a) if AOACG [i] is a member function of AOACG [j]

Add include edge edge from AOACG [i] to
AOACG [j]

8) For i = 1 to n
For j = 1 to q2

a) if AOACG [i] is a member function of AOACG [j]
Add include edge from AOACG [i] to AOACG [j]

9) For i = 1 to l
For j = 1 to q2

a) if AOACG [i] is a member function of AOACG [j]
Add include edge from AOACG [i] to AOACG [j]

10) For i = 1 to q1
For j = 1 to q1

a) if AOACG [i] instantiate object of AOACG [j]
Add creation edge from AOACG [i] to AOACG [j]

11) End
4) Algorithm for constructing aspect-oriented package level

dependence graph: Considering AOPG is a two-dimensional
array storing the information of the aspect-oriented package
level dependence graph.

1) Begin
2) For each class draw a square
3) For each aspect draw double square
4) For each package draw a rounded square
5) For i = 1 to q1

For j = 1 to r
a) if AOPG [i] belongs to AOPG [j]

Add grouped-into edge from AOPG [i] to AOPG [j]
6) For i = 1 to q2

For j = 1 to r
AOMG [j] a) if AOPG [i] belongs to AOPG [j]

7) For i = 1 to l
For j = 1 to l

7) End

Add grouped-into edge from AOPG [i] to AOPG [j]

a) if AOMG [i] calls AOMG [j]
Add call edge from AOMG [i] to AOMG [j]

b) if AOMG [i] weaved with AOMG [j]
Add weaving edge from AOMG [i] to AOMG [j]

8) End

5) Aspect-oriented reverse hierarchical dynamic slicing al-
gorithm: In this section, we present our proposed algorithm to
compute the dynamic slices of aspect-oriented programs. We
have used the term like I1 , I2 , I3 , I4 to hold the intermediate
dynamic slice at different levels respectively.

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5009

1) MainAlgo()
2) Begin
3) Input an aspect-oriented program Pro

4) Run the program with the required input values
5) Get the execution trace
6) Based on the execution trace construct the AOSLDG
7) Fetch the slicing node
8) From the slicing node if outgoing control dependence

edge exist
Traverse through the outgoing control dependence edge
and list the reached node in I1

9) For each outgoing call edge, call ForOutgoingCallEdge()
10) For each outgoing weaving edge, call ForoutgoingWeav-

ingEdge()
11) For each incoming weaving edge, call ForIncoming-

WeavingEdge()
12) Do the following steps to find set I2

a) Construct the AOMLDG
b) For i=1 to | I1 |

i) if I1 is a call node or method entry node
Traverse through the outgoing all edge or out-
going weaving edge or incoming weaving edge
and list the reached node in set I2

ii) Update I2 = I1 [i] ∪ I2

iii) EndIf
iv) EndFor

13) Do the following steps to find set I3

a) Construct the AOACELDG
b) For i=1 to | I2 |

i) From I2 [i] traverse through the include edge
and reach the node n5

ii) If !(search(I3 , n5)==true)
Update I3 = I3 ∪ I6

iii) EndIf
iv) EndFor

14) Do the following steps to find set I4

a) Construct the AOPLDG
b) For i=1 to | I3 |

i) I3 [i] is a class entry node or aspect entry node
then
Traverse through the outgoing grouped-into
edge and list the reached node n7

ii) If !(search(I4 , n7)==true)
Update I4 = I4 ∪ I7

iii) EndIf
iv) EndFor

15) AO Dslice = I1 ∪ I2 ∪ I3 ∪ I4

16) For i=1 to | AO Dslice |
a) Output AO Dslice[i]
b) EndFor

17) End

ForOutGoingCallEdge()

1) Begin

2) If from the node outgoing all edge exist
Traverse and list the reached node in set I1

3) If incoming control dependence edge exist
Traverse and list the reached node in set I1

4) For each reached node if outgoing data dependence edge
exist
Traverse and list the reached node in set I1

5) For each node repeat ForOutGoingCallEdge()
6) End
ForOutGoingWeavingEdge()
1) Begin
2) Traverse through the outgoing weaving edge and list the

reached node in set I1

3) If incoming control dependence edge exist to reached
node
Traverse and list the reached node in set I1

4) For each node list node call ForOutGoingCallEdge()
5) End
ForIncomingWeavingEdge()
1) Begin
2) If incoming weaving edge exist

Traverse through the incoming weaving edge and list the
reached node in set I1

3) If incoming control dependence edge exist
Traverse and list the reached node in set I1

4) For each node repeat ForOutGoingCallEdge()
5) End

B. Overview of aspect-oriented reverse hierarchical slicing
algorithm

Aspect-oriented reverse hierarchical dynamic slicing al-
gorithm computes the dynamic slices of an aspect-oriented
program in four different levels. In this section, we present the
overview of our proposed algorithm. Our algorithm first inputs
the program. Then the program is being executed with required
input values. After the execution, we get the execution trace
of the program under consideration. Based on the execution
trace, we construct the AOSLDG (Aspect-oriented statement
level dependence graph). In this level, we fetch the slicing
node, on which the dynamic slice has to be computed. We
named the dynamic slice computed at this level AOSL Dslice
(Aspect-oriented statement level dynamic slice).This dynamic
slice is stored in an array named as I1 .

To compute the AOSL Dslice, our algorithm defines three
different subroutines named as ForIncomingWeavingEdge(),
ForOutGoingWeavingEdge(), ForOutGoingCallEdge(). Which
are called in three different context.

After the slicing node is being fetched, our algorithm
traverses from the slicing node through the outgoing control
dependence edge and list the reached nodes. Then our
algorithm traverses if any outgoing data dependence edge
exist and list the reached nodes in the array I1 .

Then our algorithm verifies for different condition like if
any outgoing call edge exist or if any incoming weaving edge

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5010

exist or if any outgoing weaving edge exist from the slicing
node and recursively call the three specified subroutine to list
the dependent nodes in the array I1 .

Then our algorithm proceeds to compute the second level

dynamic slice named as AOML Dslice. For this, our algorithm
first constructs the AOMLDG (Aspect-oriented method level
dependence graph). Already array I1 contains the nodes
belongs to the aspect-oriented statement level dynamic slice.
Now our algorithm starts traversing from the method entry
nodes of array I1 through the call edges or weaving edge and
reached other dependent method entry nodes and list those
nodes in the array I2 . Which constitute the aspect-oriented
method level dynamic slice.

To compute the AOCL Dslice (aspect-oriented class

level dynamic slice), our algorithm first constructs the
AOACWLDG (Aspect-oriented aspect-class weaving level
dependence graph). From array I2 our algorithm starts
traversing from the method entry nodes through the include
edge to get its respective class or aspect node. Then it
also traverses through the data dependence edges to get
some of the nodes on which method entry nodes are data
dependent.Basically in this level our algorithm find out the
classes or aspect and their data members, those contribute
towards the aspect-oriented class level dynamic slice and save
those nodes in the array I3 .

Finally our algorithm computes the AOSL Dslice (aspect-

oriented package level dynamic slice). To compute the slice
at package level, our algorithm starts traversing from the
class entry nodes or the aspect entry node from the array I3

through the outgoing grouped-into edge and list the package
entry node in array I4 .

After getting the distinct four set I1 , I2 , I3 , I4 , our algorithm

does the union of those sets to compute the AO Dslice
(aspect-oriented dynamic slice) of an aspect-oriented program.

C. Working of the proposed algorithm

We illustrate the working of our algorithm with the help an
example. Let us consider an aspect-oriented program given in
Fig.2. At first we run the program and get the execution trace.
Based on it the aspect-oriented statement level dependence
graph is being constructed, which is shown in Fig.3. Now,
we fetch the slicing node say node 18, on which the dynamic
slice has to be computed. Our algorithm traverses from the
node 18 through the outgoing control dependence edge and
reach the reached node 17. Node 17 is stored in I1 .

From node 18, we traverse through the outgoing call edge

and reach the node 4. Here for addressing a outgoing call edge
our algorithm calls the subroutine ForOutGoingCallEdge().
It collect all the nodes which control dependent on node 4.
Node 4, 5, 6 are now saved in I1 . Then our algorithm calls
the subroutine ForOutGoingWeavingEdge() and reaches the

node 41. Then our algorithm traverses the incoming control
dependent edges and lists the reached nodes 42, 43, 44. From
node 43 there are data dependence edges to nodes 42 and 1,
which have to be considered, but already I1 contains nodes
42 and 18. Again from each reached node, we verify for
any outgoing call edge, outgoing weaving edge or incoming
weaving edge. From node 42 and 43 there are two outgoing
call edges for which subroutine ForOutGoingCallEdge() is
being called and we get the nodeS 24, 34 and node 25, 26,
35, which are control dependent on nodes 24, 34.

Finally staring with node 18 as slicing node, we have
nodes 17, 18, 4, 5, 6, 41, 42, 43, 44, 24, 34, 25, 26, 35 in I1 .

Then our algorithm constructs the aspect-oriented method
level dependence graph. From I1 we get the method entry
nodes such as node 17, node 4, node 41, node 24, node
34 and traverse through the call edge or weaving edge to
get the dependent nodes in the aspect-oriented method level
dependence graph, and save them in I2 . Now I1 contains
nodes 17, 4, 41, 24, 34.

To get I3 , our algorithm constructs the aspect-oriented
aspect-class weaving level dependence graph. From the
method entry node collected in I2 , our algorithm traverses
through the include edge to get the class/aspect entry nodes.
From nodes 17 and 4 our algorithm moves through the
include edge and reach the node 2. From node 41 and 34
through include edge our algorithm reach node 29. From
node 24 our algorithm traverses through the include edge and
reach node 21.

Now, from the nodes listed in I2 , our algorithm traverses
through the outgoing data dependence edge to list the nodes
3, 30, 23. Our algorithm listed node 21, 2, 29, 3, 30, 23 in
I3 .

To get the aspect-oriented package level dependence graph,
our algorithm constructs the aspect-oriented package level
dependence graph. From the class entry nodes or aspect entry
nodes i. e. from 21, 2, 29 our algorithm moves through the
outgoing grouped-into edge and lists the reached node 1 in
I4 , which is a package entry node.

Finally our algorithm performs the union of I1 , I2 , I3 , I4

and save the result in AO Dslice. Now AO Dslice contains
nodes 17, 18, 4, 5, 6, 41, 42, 43, 44, 24, 34, 25, 26, 35,
21, 2, 29, 3, 30, 23, 1, which constitutes the dynamic slice
of our example program under consideration with respect to
statement number 18.

D. Correctness of the algorithm

This section presents the correctness of the proposed
algorithm.

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5011

Theorem: Aspect-oriented reverse hierarchical dynamic
slicing algorithm always computes correct dynamic slices
with respect to a given slicing criterion.

Proof: We will prove the correctness of aspect-oriented

reverse hierarchical dynamic slicing algorithm using the
mathematical induction. Our algorithm computes the dynamic
slices of an aspect-oriented program by analyzing the
dependence relation between the statements of the program
under consideration. Aspect-oriented dynamic slice of a
statement Si will certainly contain statements, that are having
dependence relation with statement Si . Let us consider our
aspect-oriented program contains only one statement S1 . So
AO Dslice of S1 will contain S1 , because S1 is dependent
on S1 . The computed dynamic slice for first statement S1 is
correct.

Suppose there are two statements S1 , S2 presents in our

aspect-oriented program. So dynamic slice at S2 will contain
S1 , if S2 is dependent on S1 . Otherwise, it will not be
included. In this context, we can argue that dynamic slice of
2nd statement is also correct.

Like this, we can prove that dynamic slices of statements

prior to Su is correct. According to the definition aspect-
oriented dynamic slice of statement Su , only contains those
statements, on which statement Su is dependent. For all
statements prior to statement Su the computed dynamics are
correct. Hence, the dynamic slice of statement Su is correct.
This establishes the correctness of our algorithm.

E. Complexity Analysis of Aspect-oriented reverse hierarchi-
cal dynamic slicing algorithm

We analyze the complexity of our algorithm in terms of
space and time.

Space Complexity: Our proposed algorithm works on four

different level graphs to compute the dynamic slice of aspect-
oriented programs. The space requirement for those level
graphs is :O(n2) + O(l2) + O(q2) +O(r2).

Here n, l, q, r are the number of nodes in aspect-oriented
statement level, aspect-oriented method level, aspect-oriented
aspect-class weaving level and aspect-oriented package level
graph respectively. Where n suppose to be greater than l, q, r.
Hence, we consider the space requirement of these graphs is
O(n2).

Time Complexity: The time complexity of our algorithm is
equal to the sum of the time required to construct the different
level graphs and the time required to traverse the graph. We
have computed the time complexity at a different level. For
an aspect-oriented statement level graph having n numbers of
the node. The time required to construct the graph is O(n2).
And the time requires traversing the graph is O(E1 n). Where
E is the total numbers of edges in the graph. Substituting
the value of E, we will get the time complexity at aspect-
oriented statement level is: O[(n − 1)n] which is equal to

Fig. 7. Aspect-oriented dynamic slicer

O(n2). Similarly we compute the time complexity for other
levels and get the total time complexity: O(n2) + O(l2) +
O(q2) +O(r2). Assuming n is greater than the l, q, r, the time
complexity of our algorithm is O(n2).

IV. TOOL ARCHITECTURE OF ASPECT-ORIENTED DYNAMIC

SLICER

In this section, we briefly explain the tool architecture of
AODS. AODS is an aspect-oriented dynamic slicer, which may
be used for implementing our proposed algorithm.
Aspect-oriented dynamic slicer accepts an aspect-oriented pro-
gram as input and generates aspect-oriented dynamic slice of
the inputted program as the output.
Once the aspect-oriented program is accepted by our proposed
tool, lexical analyzer starts identifying the tokens, in the pro-
gram. We have parser and semantic analyzer as a component,
which will verify the grammar of the inputted program.
Then the aspect-oriented program is instrumented by a code
instrument. After that, the instrumented code is being submit-
ted to the compiler for generating the object code. Now the
inputted program is executed with the input given by the user
and we get the execution trace. Based on the execution trace
different level dependence graphs are being constructed. Once
a level dependence graph is being constructed, the slicer is
applied to it to get the dynamic slice. After the dynamic slice
is computed at different levels, all are integrated to compute
the dynamic slice of an aspect-oriented program.

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5012

We presented the architecture of our tool in Fig.7. Which
accept an aspect-oriented program as input, computes the
dynamic slice by constructing different level graphs and ap-
plying the aspect-oriented reverse hierarchical dynamic slicing
algorithm.

V. COMPARISON WITH RELATED WORK

We have compared our approach with some other related
approach. In this section, we present few of those comparative
study done by us. Mohapatra et al. [5] in their approach
proposed DADG (Dynamic Aspect-oriented Dependence
Graph), which represents all the statements of an aspect-
oriented program in a single graph. The proposed graph may
become unmanageable if the program under consideration is
large.

Zhao et al. [6] proposed their approach to computing the
static slice of aspect-oriented programs. They introduced
ASDG, which consists of three parts: System Dependence
graph for non-aspect code, a group of dependence graphs for
aspect code and some additional arcs to make connections
between the graph for aspect and nonaspect code. The ASDG
may complicate for large programs. Hence, their proposed
algorithm will take more time to traverse and compute the
dynamic slice.

Ahmed et al. [7] proposed Dependence Flow Graph (DFG)
to represent the aspect-oriented programs. They introduced
Static Dependence Slicing Tool to compute the static slice
of the aspect-oriented program. As they compute the static
slice, the slice may be not useful in some of the interactive
software engineering applications.

Ray et al. [8] proposed AOSG (Aspect System Dependence
Graph) as the intermediate program representation and com-
putes the dynamic slice of an aspect-oriented program by
marking and unmarking the edges of the graph during the
run time. As this approach considered the complete program
to construct the AOSG. The AOSG may complicate for large
programs, hence the proposed algorithm will take more time
in marking and unmarking the edges of the graph.

But in our approach, we introduced level graphs, which
represents the program level wise. Hence, it seems to be an
efficient intermediate representation as compared to above-
mentioned approaches. Our proposed AORHDS algorithm
computes dynamic slice of an aspect-oriented program
starting from the statement level to package level. It can
generate the intermediate dynamic slice at different levels. It
will take less time in traversing the graphs and computing
the dynamic slices.

VI. CONCLUSION AND FUTURE WORK

This paper proposed an algorithm which can work on
different level graphs to compute the dynamic slices of an
aspect-oriented program. This intermediate representation is

efficient because it minimizes our area of focus. We will be
able to compute the dynamic slice at different levels like
statement level, method level, class level and package level.
This can be a simplified approach to computing the dynamic
slices of aspect-oriented programs.The aspect-oriented reverse
hierarchical dynamic slicing algorithm proposed in this paper
accepted a single slicing criterion (slicing node) to compute
the slice. The resulting slice can be used in various software
engineering applications such as debugging and testing etc.
In future, we will focus on finding the dynamic hierarchical
slices of feature-oriented programs and web-based programs.

REFERENCES

[1] Beszedes, Arpad, Gergely, “Graph-less dynamic dependence-based
dynamic slicing algorithm,” Source Code Analysis and Manipulation,
2006. SCAM’06. Sixth IEEE International Workshop on, pp. 21-30,
2006.

[2] Wang, T., Roychoudhury, A., ”Dynamic slicing on Java bytecode
traces”, ACM Transactions on Programming Languages and Systems
(TOPLAS), 2008.

[3] Zhang, X., Gupta, R., Zhang, Y.,”Precise dynamic slicing algorithms”,
Software Engineering, 2003. Proceedings. 25th International Confer-
ence on Software Enginering, pp. 319–329, 2003.

[4] Mohapatra, D. P., Mall, R., Kumar, R., ”An Overview of Slicing
Techniques for Object-Oriented Programs”, Informatica, pp. 253–277,
Vol. 30, 2006.

[5] Mohapatra, D. P., Sahu, M., Kumar, R., and Mall, Rajib,”Dynamic
slicing of aspect-oriented programs”, Informatica, vol. 32, number. 3,
2008.

[6] Zhao, J., ”Slicing aspect-oriented software”, Program Comprehension,
2002. Proceedings. 10th International Workshop on, pp. 251–260,
2002.

[7] Ahmad, S., Ghani, A. Sani, F. Atan, R.,”Slicing aspect oriented program
using dependence flow graph for maintenance purpose”, Proceedings
of Regional Conference on Knowledge Integration in ICT, pp. 236–241,
2010.

[8] Ray, A., Mishra, S., Mohapatra, D., P., ”A Novel Approach for Com-
puting Dynamic Slices of Aspect-Oriented Programs”, arXiv preprint
arXiv:1403.0100, 2014.

[9] Li, B., Fan, X., ”JATO: Slicing Java program hierarchically”, TUCS
Techinical Reports,number. 416, 2001.

[10] Hammer, C., Snelting, G., ”An improved slicer for Java”, Proceedings
of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pp. 17–22, 2004.

[11] Panda, S., and Mohapatra, D. P., ”Application of Hierarchical Slicing
to Regression Test Selection of Java Programs”, 2013.

[12] Singh, J., Mohapatra, D. P., ”A unique aspect-oriented program slicing
technique”, Advances in Computing, Communications and Informatics
(ICACCI), 2013 International Conference on, pp. 159–164, 2013.

S. R. Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5004-5013

www.ijcsit.com 5013

